

Forensic Psychophysiology: **Detecting espionage with the Guilty Knowledge Test**

Ashcroft, K. R.¹, Rill, H.-G.², Gamer, M.², Gödert, H. W.², Vossel, G.², & Busuttil, A.¹ ¹ Forensic Medicine Section, Department of Pathology, University of Edinburgh, Scotland ² Interdisciplinary Research Group Forensic Psychophysiology, Department of Psychology, University of Mainz, Germany

Introduction

Forensic Psychophysiology

Classification of individuals as either deceptive (guilty) or truthful (innocent) on the basis of differential autonomic responses to crime-related and comparison questions.

Detection of Deception: Test for Espionage and Sabotage (TES)

- 1. Relevant Questions (RQs): directly address the crime under investigation (e.g. "Have you provided secret information to an unauthorised person?").
- 2. Directed Lie Comparison Questions (DLCQs): Require the negation of behaviors that everyone has done in their life (e.g. "Have you ever told a lie?").

Individuals are instructed to lie and to think about particular situations when they committed the acts embodied in the DLCQs.

3. Irrelevant Questions: neutral (e.g., "Is your name ...?").

Assumptions

Guilty: stronger responses to RQs than to CQs (RQs > DLCQs). Innocent: stronger responses to CQs than to RQs (DLCQs > RQs).

- Problem
- Emotional significance of DLCQs is doubtful: Can DLCQs reliably produce larger responses in innocent subjects?

Detection of Concealed Information: Guilty Knowledge Test (GKT)

- Multiple-choice questions: asking crime-specific details of the investigation
- (e.g. "The murder took place in ...").
- 1. Relevant Items (RIs): crime-related (e.g. "a hotel?").
- 2. Irrelevant Items (IIs): similar and plausible, but not crime-related alternatives (e.g. "a service station?, a store?, a house? etc.").

Assumptions

- Subjects who possess "guilty knowledge": recognise crime-relevant information and react more strongly to RIs than IIs.
- Subjects without "guilty knowledge": no differential reactions to RIs or IIs.

Advantage

Low risk for innocents (without "guilty knowledge") to react systemically more strongly to relevant item and to misclassified as "guilty".

Standard Parameters of the GKT

- Skin conductance responses (SCR): Overall, SCR-magnitudes are larger to RIs than to IIs for guilty subjects; This difference has been replicated by many studies (cf. MacLaren, 2001).
- Respiration: Respiration Line Length (RLL) tends to be smaller to RIs than to IIs for guilty subjects.
- Typical Application of the GKT (e.g. in Japan and Israel)
- Crimes like theft or violence against persons.

Aims of this Study

- Examination of the utility of the GKT in a mock espionage crime scenario.
- Comparison between laboratory equipment measuring skin conductance responses (SCRs) and Stoelting Computerized Polygraph System (CPS) measuring SCRs as well as thoracic and abdominal respiration.

Method

Participants

- N = 56 students (31 female; age: M = 23.5, SD = 3.42) were randomly assigned to one of following groups:
- 1. Guilty subjects (n = 28)
 - In order to make the mock espionage ecologically valid for the students, they had to gather information about an examination paper from a professor's office.
 - Guilty subjects were instructed to: go to the professor's office, take the key no. 8 out of a leather jacket pocket, unlock and open a desk drawer that was covered by an executive case, open a yellow file inside the drawer, read aloud and record the examination questions with a dictation machine.

2. Innocent subjects (n = 28)

Carried out a specific instruction in the same building, but oblivious to the relevant details of the mock espionage scene.

Guilty Knowledge Test (GKT)

- 6 multiple choice questions seeking knowledge of: last name of professor, key number, kind of jacket, colour of the file, dictation machine and executive case (cf. Table 1)
- 1 buffer item (the first in each sequence), 1 relevant item (RI) and 5 irrelevant items (IIs).
- Stimuli were presented as pre-recorded audio samples, the inter-stimulus-interval was 22 s
- Subjects were instructed to deny any knowledge of the items.

Table 1. Example of a GKT question

What is the professor's last name?									
a) Kressel	b) Rieder	c) Strobel	d) Kiefer	e) Weber	f) Bender				

Measurement

- 1. Laboratory equipment:
- SCR: Amplitude of highest SCR (in µS) within a latency window of 1-10 s following question onset.
- 2. Stoelting Computerized Polygraph System:
 - SCR: Difference between the lowest and the highest value (in μ S) within a time window of 0.5-15 s following question onset
 - Respiration: Respiration line length for thoracic and abdominal respiration within a time window of 0-10 s following question onset.

Table 2. Lykken-Scoring (cf. MacLaren, 2001) to classify each subject as guilty or innocent

2 Pts Response to the RI is the largest in the inspected multiple-choice block 1 Pt. Response to the RI is the second largest in the inspected multiple-choice block. 0 Pts At least two of the responses to the IIs are higher then the response to the RI.

Note: Classification as guilty if the sum is greater or equal to 6 points.

Results

SCR-Magnitudes

- Significant interaction between subjects' guilt status and item type (cf. Figure 1).
- Guilty subjects showed stronger reactions to RIs than to IIs.
- No significant differences were found for the innocents.

Hit rates: see Table 3.

Table 3. Hit rates based on Lykken-Scoring

i Solt-amplitudes		
Sensitivity ¹ :	75.0%	
Specificity ² :	85.7%	
Overall:	80.4%	

¹ hit rate for guilty subjects ² hit rate for innocent subjects

Guilt Status

Figure 1. SCR-magnitudes: interaction between guilt status and item type.

CPS: Optimised scoring algorithm

- Research indicated, that the diagnostic value of the Lykken-Scoring is limited due to the neglect of the absolute differences in the physiological responses. Therefore an optimised scoring algorithm using the response differences between RIs and IIs was implemented.
- Several analyses of discrimiance were computed to estimate the contribution of every psychophysiological parameters to the diagnosis (see Table 4).

	SCR	Thoracic RLL	Abdominal RLL	Total RLL	SCR and total RLL
Sensitivity:	78.6%	67.9%	64.3%	78.6%	89.3%
Specificity:	96.4%	64.3%	78.6%	71.4%	96.4%
Overall:	87.5%	66.1%	71.4%	75.0%	92.9%

- Overall, SCR and total RLL (mean of thoracic and abdominal RLL) discriminated best between guilty and innocent subjects
- Cross validation of this discriminant function (leave one out method) yielded an overall hit rate of 91.1% (sensitivity: 89.3%, specificity: 92.9%).

Discussion

- Both, SCR and CPS, showed a significant differentiation between guilty and innocent subjects.
- Even the simple technique of the Lykken-Scoring on the SCRs achieved an overall hit rate above 80%
- An optimised scoring algorithm based on differences in the raw scores of SCR and RLL vielded an impressive overall hit rate above 90%.
- Results confirm the status of the GKT as useful diagnostic tool in different situations. The findings support the utility of the GKT for identifying espionage suspects.

Tasks of future research

- Cross validation of the computed discriminant function.
- Field studies in espionage crime scenarios using the GKT.

Reference

MacLaren, V. V. (2001). A quantitative review of the guilty knowledge test. Journal of Applied Psychology, 86, 674-683.